A Unified Framework for Thermal Face Recognition
نویسندگان
چکیده
The reduction of the cost of infrared (IR) cameras in recent years has made IR imaging a highly viable modality for face recognition in practice. A particularly attractive advantage of IR-based over conventional, visible spectrum-based face recognition stems from its invariance to visible illumination. In this paper we argue that the main limitation of previous work on face recognition using IR lies in its ad hoc approach to treating different nuisance factors which affect appearance, prohibiting a unified approach that is capable of handling concurrent changes in multiple (or indeed all) major extrinsic sources of variability, which is needed in practice. We describe the first approach that attempts to achieve this – the framework we propose achieves outstanding recognition performance in the presence of variable (i) pose, (ii) facial expression, (iii) physiological state, (iv) partial occlusion due to eye-wear, and (v) quasi-occlusion due to facial hair growth.
منابع مشابه
Face Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملUnified subspace analysis for face recognition - Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on
We propose a face difference model that decomposes face difference into three components, intrinsic difference, transformation difference, and noise. Using the face difference model and a detailed subspace analysis on the three components we develop a unified framework for subspace analysis. Using this framework we discover the inherent relationship among different subspace methods and their un...
متن کاملUnified Subspace Analysis for Face Recognition
We propose a face difference model that decomposes face difference into three components, intrinsic difference, transformation difference, and noise. Using the face difference model and a detailed subspace analysis on the three components we develop a unified framework for subspace analysis. Using this framework we discover the inherent relationship among different subspace methods and their un...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملFace recognition committee machine
Face recognition has been of interest to a growing number of researchers due to its applications on security. Within past years, there are numerous face recognition algorithms proposed by researchers. However, there is no unified framework for the integration. In this paper, we implement different existing well-known algorithms, Eigenface, Fisherface, Elastic Graph Matching (EGM), Support Vecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014